MEMORANDUM: RECOMMENDATIONS FOR PIPE MATERIAL SELECTION

Moser and Associates Engineering for CDOT Region 6

Date: 9/30/10

Memorandum to File:	Recommendations for Pipe Material Selection for Construction Project
	17536, I-76 Bridge Replacement over the South Platte River,
	Unincorporated Adams County, Colorado, C 0761-204.

- From: Teresa Patterson, P.E. Moser and Associates Engineering
- cc: Justin Werdel John Gunther, P.E.
- Subject: Recommendations for Pipe Material Selection

The following memorandum consists of recommendations for Pipe Materials Selection for the I-76 Bridge Replacement over the South Platte River project.

Memorandum: Recommendations for Pipe Material Selection for Construction Project 17536, I-76 Bridge Replacement over the South Platte River, Unincorporated Adams County, Colorado, NH C 0761-204.

TABLE OF CONTENTS

- 1. RECOMMENDATION
- 2. PROCESS TO DETERMINE PIPE MATERIAL SELECTION RECOMMENDATION
- 3. STEP I
- 4. STEP II
- 5. STEP III
- 6. STEP IV
- 7. STEP V
- 8. STEP VI
- 9. STEP VII
- 10. ENGINEERING PRACTICES AND JUDGMENT
- 11. SOIL TESTING RESULTS

REFERENCE DOCUMENTS

CDOT M Standards 2006 CDOT Pipe Material Selection Policy Standard Special Provisions SSP 603 and 712

1. RECOMMENDATION

In accordance with the Colorado Department of Transportation Standard Specifications for Road and Bridge Construction, the following justification supports the decision to recommend Class 7 exposure severity reinforced concrete pipe as specified in 601.04 for use on project 17536, also known as the I-76 Bridge Replacement over the South Platte River, Unincorporated Adams County, Colorado, C 0761-204.

2. PROCESS TO DETERMINE PIPE MATERIAL SELECTION RECOMMENDATION

The following steps are in compliance with the CDOT Pipe Material Selection Policy and are listed in chronological order. A response demonstrating compliance with each step follows.

3. STEP I:DETERMINE APPLICATION

<u>Step I: Determine Application</u> – In all cases, the Project Manager will use the latest version of CDOT's *Drainage Design Manual*. The pipe selection process begins when the Project Manager determines the location of the new pipe. The Project Manager will then determine and document the specific use of the pipe:

- Cross Drain
- Side Drain
- Storm Sewer

Compliance:

The specific use for the pipes associated with this project is for storm sewer.

4. STEP II: DETERMINE ABRASION LEVEL

<u>Step II: Determine Abrasion Level</u> – An estimate of the potential for abrasion is required to determine acceptable pipe types and whether there is a need for invert protection. Four levels of abrasion are referred to in this guidance, and the following guidelines are established for each level:

- <u>Abrasion Level 1</u> This level applies where the conditions are nonabrasive. Nonabrasive conditions exist in areas of no bed load and very low velocities. This is the level assumed for the soil side of drainage pipes. This is also the level assumed for the inverts of cross drains and side drains installed in typically dry drainages.
- <u>Abrasion Level 2</u> This level applies where low abrasive conditions exist. Low abrasive conditions exist in areas of minor bed loads of sand and velocities of 5 fps or less.
- <u>Abrasion Level 3</u> This level applies where moderately abrasive conditions exist. Moderately abrasive conditions exist in areas of moderate bed loads of sand and gravel and velocities between 5 fps and 15 fps.
- <u>Abrasion Level 4</u> This level applies where severely abrasive conditions exist. Severely abrasive conditions exist in areas of heavy bed loads of sand, gravel, and rock and velocities exceeding 15 fps.

Compliance:

The project conditions were evaluated, and it was determined that Abrasion Level

- Per hydrologic calculations, the maximum 5-year peak flow in the storm sewers = 11 cfs, and the maximum 100-year peak flow in the storm sewer = 22 cfs. The maximum slope = 5%.
- The South Platte River has a minor bed load consisting of silt and sand.
- The engineer determines the abrasion level of the system to be ABRASION LEVEL 1.

5. STEP III: DETERMINE CORROSION LEVEL

<u>Step III: Determine Corrosion Level</u> – The station of each proposed pipe must be supplied to the appropriate Region Staff (Region). The Region will determine a sampling schedule to ensure that corrosive forces are adequately addressed. The Region will sample soil and water at these locations. The resulting sample testing information will be used in flow charts (Figures 1 and 2) to select appropriate material.

The Project Manager will document the following properties of the soil and water:

- Sulfate Levels
- Chloride Levels
- Resistivity
- pH
- Moisture Levels

This information will be obtained at all pipe locations supplied by the Project Manager and documented in the project records by the Project Manager. If the project is small enough, or the alluvium of the area is sufficiently homogeneous, a reduced sampling schedule will be acceptable as determined by the Region.

Compliance:

The table below lists the properties of the on site soil samples taken for the project by summarizing the Soil Chemistry testing results for the project by sample ID:

Su	mmary	of Labo	orator	y Test	t Resul	ts by I	Boring					
SAN	IPLE DA	ATA		CORROSION								
Boring/ Sample	De (f	epth eet)	Hq	CR Level	Sulfates	CR Level	Chlorides	CR Level				
	Тор	Bottom			%		%					
B-1/S-12	60.0	61.5	7.7	0	0.009	0	10	0				
B-3/S-2	9.5	11.0	6.9	0	0.007	0	45	0				
B-4/S-2	7.5	9.0	7.0	0	0.005	0	200	0				
B-4/ S-9	42.5	44.0	7.2	0	0.013	0	15	0				

Table III-a

A table listing the full results can be found at the end of this document.

Utilize Table 1 of the CDOT Pipe material Selection Policy with the sulfate percentage of 0.013, the worst case corrosive value.

		SOIL			WATER			
CR Level	Sulfate	Chloride		Sulfate	Chloride			
	(SO ₄)	(CI)	pН	(SO4)	(CI)	pН		
	% max	% max		ppm (max)	ppm (max)			
*CR 0	0.05	0.05	6.0-8.5	50	50	6.0-8.5		
CR 1	0.10	0.10	6.0-8.5	150	150	6.0-8.5		
CR 2	0.20	0.20	6.0-8.5	1,500	1,500	6.0-8.5		
CR 3	0.50	0.50	6.0-8.5	5,000	5,000	6.0-8.5		
CR 4	1.00	1.00	5.0-9.0	7,500	7,500	5.0-9.0		
CR 5	2.00	2.00	5.0-9.0	10,000	10,000	5.0-9.0		
CR 6	>2.00	>2.00	<5 or >9	>10,000	>10,000	<5 or >9		
*No special Concrete pip in accordance provision or Table 1, abo	corrosion pro be used whe be with subs plan note. and obs	otection recon n the pH of ei ection 706.07 ervations of fi	nmended wh ther the soil . When nee eld conditior	or watues are or water is leaded, specify t	within these sthan 5 shal he coating in pipes are to b	limits. I be coate a special e used as		

Region 2 of the Colorado Department of Transportation considers the project to meet Corrosion Resistance Number 0 (CR0) due to the percent of Sulfate in the soil samples.

6. STEP IV: SELECTION OF PIPE MATERIAL TYPE

<u>Step IV: Selection of Pipe Material Type</u> – Use the flowcharts in this document to identify acceptable pipe material types. If metal pipe is determined to be an allowable material type as determined in Figure 1 of this document, use Table 2 to determine whether there are additional requirements for metal pipes.

Compliance:

The current project uses pipes in Storm Sewers, therefore Figure 2 of the CDOT Pope Material Selection Policy will be used, as stated above.

When extending an existing pipe, the same size and type of material must be specified. If conditions are Abrasive level 1 or 2 and CR 0, specify material type from Section 603 pay items. Figure 2 yields a Class 7 Pipe to enter into Table 624-1.

Material Allowed	Class of Pipe*										
**	0	1	2	3	4	5	64	7	8	9	104
CSP	Y	Ν	Ν	Ν	Ν	Ν	N	N	Ν	Ν	Ν
Bit. Co. CSP	Y	Y ¹	Ν	Ν	N	Ν	N	N	Ν	Ν	Ν
A.F. Bo. CSP	Y	Y	Y	Y	Y	Y	Y	N	N	Ν	N
CAP	Y	Y ²	Y^2	Y^2	Y ²	Y	N	N	Ν	Ν	Ν
PCSP - both sides	Y	Y	Y	Y	N	N	N	N	N	N	N
PVC	Y	Υ	Υ	Υ	Υ	Υ	Y	N	Ν	Ν	Ν
PE	Y	Y	Y	Y	Y	Y	Y	N	Ν	Ν	Ν
RCP (SP0) ^{3,5}	Y	Y	N	N	N	N	N	Y	N	N	N
RCP (SP1) ^{3,5}	Y	Y	Y	N	N	N	N	Y	Y	N	N
RCP (SP2) ^{3,5}	Y	Y	Y	Y	Y	N	N	Y	Y	Y	N
RCP (SP3) ^{3,5}	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

TABLE 624-1Materials Allowed for Class of Pipe

* As determined by the Department in accordance with the CDOT *Pipe Selection Guide*. Determination is based on abrasion and corrosion resistance.

** Y=Yes; N=No.

¹ Coated Steel Structural Plate Pipe of equal or greater diameter, conforming to Section 510, may be substituted for Bit. Co. CSP at no additional cost to the project.

² Aluminum Alloy Structural Plate Pipe of equal or greater diameter, conforming to Section 510, may be substituted for CAP at no additional cost to the project.

³ SP= Class of Sulfate Protection required in accordance with subsection 601.04 as revised for this project. RCP shall be manufactured using the cementitious material required to meet
 ⁴ For pipe classes 6 and 10, the RCP shall be coated in accordance with subsection 706.07 when the pH of either the soil or water is less than 5. The Contract will specify when RCP is
 ⁵ Concrete shall have a compressive strength of 4500 psi or greater.

Where class of pip in accordance with state whether the r	e specified allo the resistivity r resistivity requir	ws the use of requirements i rements apply	metal pipe, its us n Table 624-2. Ti	e will be limited he Contract will
iv.	. The Table 62 SP3.	4-1 allows for	Reinforced Concr	ete Pipe, SP2 and
v	. Use a value	of SP2 (SO4	= 0.38) to enter	into table 601.04
	resulting in a (Class 2 severity	exposure.	
Table 601.04		_	_	
R	EQUIREMENTS T	O PROTECT AG	AINST DAMAGE TO	
CONCRETE E	Water-	ACK FROM EXT	ERNAL SOURCES C	F SULFATE
	soluble		Water	
Severity of	sulfate (SO ₄)	Sulfate	cementitious	Cementitious
sulfate	in dry soil,	(SO₄) in	ratio,	material
exposure	percent,	water, ppm	maximum	requirements
Class 0	0.00 to 0.10	0 to 150	0.45	Class 0
Class 1	0.11 to 0.20	151 to 1500	0.45	Class 1
Class 2	0.21 to 2.00	1501 to 10,000	0.45	Class 2
Class 3	2.01 or greater	10,001 or greater	0.4	Class 3
For this project, the with a Class 2 sulf	e RCP will have ate exposure re	e to meet the r esistance conc e resistance :	equirements of s rete. shall be one of t	ection 601.04,
(1) ASTM C 150 1	Type V with a m	ninimum of a 2	0 percent substit	ution of Class F
(2) ASTM C 150 T Class F fly ash	nt Type II or III with h by weight. Th	h a minimum o le Type II or III	of a 20 percent su I cement shall ha	Ibstitution of ve no more than
0.040 percent	expansion at 1	4 days when t	ested according /	ASTM C 452
(3) ASTM C 1157 (4) ASTM C 1157	Type HS; Clas	s C fly ash shi Class E fly asl	all not be substitu	ited for cement.
0.05 percent e	expansion at 6 n	nonths or 0.10) percent expansi	on at 12 months
when tested a	ccording to AST	TM C 1012		
(5) A blend of port minimum of 20 than 0.05 perc months when a	tland cement m) percent Class ent expansion :	eeting ASTM F fly ash by w at 6 months of	C 150 Type II or veight, where the r 0.10 percent exp	III with a blend has less pansion at 12
 (6) ASTM C 595 1 cement. 	Type IP(HS); CI	ass C fly ash	shall not be subs	tituted for

7. STEP V: VERIFY FILL HEIGHT

Step V: Verify Fill Height – Check Fill Height tables in the Standard Plans. Determine if Project Special Provisions are required and/or if any other Standard Special Provisions are applicable.

1										
		HEIGHT OF FIL	L OVER TOP OF	PIPE, H (FEET)						
	CLASS OF PIPE (0.01 IN. CRACK D-LOAD)									
TYPE OF PIPE CLASS CIR II CLASS CIR III CLASS CIR IV CLASS CIR V										
	CLASS VE II	CLASS VE III	CLASS VE IV	CLASS VE V	CLASS VE VI					
CLASS HE II CLASS HE III CLASS HE IV										
	1000 D	1350 D	2000 D	3000 D	4000 D					
CIRCULAR (CIR)	MIN. TO 18	NIN. TO 25	± 25 TO 37	± 37 TO 45						
VERTICAL ELLIPTICAL (VE)	VERTICAL ELLIPTICAL (VE) MIN. TO 18 MIN. TO 25 ± 25 TO 37 ± 37 TO 45 ± 45 TO 62									
HORIZONTAL ELLIPTICAL (HE)	MIN. TO 18	MIN. TO 25	± 25 TO 37							
ALLOWABLE RANGE OF HEIGHTS FOR FILL OVER REINFORCED CONCRETE PIPE (ALL SIZES)										

M 603-2 Standard Plans fill height Table.

Compliance:

Fill heights are not expected to exceed 6 feet. The project requirements for pipe material that are justified in Step IV of the CDOT Pipe Material Selection Policy are not changed due to fill height requirements.

8. STEP VI: ADDRESS EXCEPTIONS TO THIS POLICY

<u>Step VI: Address Exceptions to This Policy</u> – All exceptions to this policy require a Justification letter and must be approved by the Chief Engineer and the FHWA.

Compliance:

There are no anticipated exceptions in this project that will require approval of a justification letter from the Chief Engineer and the Federal Highway Administration.

9. STEP VII: DOCUMENTATION

<u>Step VII: Documentation</u> – All design decisions regarding pipe material type selection must be documented and a letter placed in the project file. A copy of all selection letters are to be sent the Area Engineer prior to final design decisions being made, for guidance and to verify consistency.

Compliance:

This 'Memorandum: Recommendation for Pipe Material Selection' is addressed to the Project File and is sent as a copy to the Project Manager and the Area Engineer for Region 6 for their verification of consistency with the CDOT Pipe Material Selection Policy.

10. ENGINEERING PRACTICES AND JUDGMENT

Selection Process – All decisions regarding pipe material type will be based on engineering practices and judgments. The Project Manager (PM) will consider such factors as durability, environmental considerations, soil conditions, fill heights, need for water tight joints, slopes of inverts, and hydraulic characteristics of pipe material inside surfaces.

Compliance:

• Hydraulic Capacity – The project is located in an urban setting, and the storm sewer pipes will have a low depth of cover. The relatively small pipe diameters are hydraulically efficient and allow a shallow depth of installation. The pipes will have smooth interior walls with Manning's N values in the range of 0.013 which is consistent with the Manning's N value for RCP.

• Roadway Compaction Requirements – The shallow depth of the pipes will allow a very low depth of cover given the site constraints. This requires that during construction, the pipe wall strength will be able to withstand the construction activity with a depth of cover less than the final road surface. Compaction around the pipe is important for a strong final road section.

• Water-tight Seal at Inlet and Manhole Interface – The storm sewer will need to be water-tight and make good connection to manholes and inlets. REC will allow such connections.

• Matrix of Selection – For each category, the pipe was considered to meet (yes) or not to meet (no) the engineering judgment criteria.

11. SOIL TESTING RESULTS

Boring Sample Depth (feet) p $\frac{1}{2}$		SAMPLE	E DATA			CORRO	SION		
Tep Bottom (ebm-cm) (ppm) 5-1 5.0 6.5 (ppm) 5-2 10.0 11.5 (ppm) 5-4 20.0 21.5 (ppm) 5-7 35.0 26.5 (ppm) 5-8 40.0 41.0 (ppm) 5-9 45.0 45.2 (ppm) 5-10 50.0 51.3 (ppm) 5-11 55.0 45.2 (ppm) 5-12 60.0 61.5 7.7 2700 90 10 R-4 67.3 68.6 (ppm) (ppm) (ppm) (ppm) 5-12 60.0 61.5 7.7 2700 90 10 R-4 67.3 68.6 (ppm) (ppm) (ppm) (ppm) B-2 5-7 15.0 35.4 10.0 62.7 (ppm) (ppm) B-3 5-1 1.6 6.9 10.0 54.5 10.0 S-	Boring	Sample	D (f	epth feet)	H	Resistivity	Sulfatos	Chlorides	
$\frac{5-2}{5-2}$ $\frac{5}{10}$ $\frac{5}{10}$ $\frac{5}{10}$ B-1 $\frac{5}{5-2}$ $\frac{5}{20}$ $\frac{5}{20}$ $\frac{5}{20}$ B-1 $\frac{5}{5-6}$ $\frac{5}{20}$ $\frac{5}{20}$ $\frac{5}{20}$ $\frac{5}{20}$ B-1 $\frac{5}{5-7}$ $\frac{5}{20}$ $\frac{5}{20}$ $\frac{5}{20}$ $\frac{5}{20}$ B-1 $\frac{5}{5-6}$ $\frac{4}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-1 $\frac{5}{20}$ $\frac{5}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-1 $\frac{5}{20}$ $\frac{5}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-2 $\frac{5}{7}$ $\frac{5}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-3 $\frac{5}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-3 $\frac{5}{210}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-3 $\frac{5}{210}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ B-4 $\frac{5}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{$			Top	Bottom	1	(ohm-cm)	(ppm)	(ppm)	
$B-1 = \begin{bmatrix} \frac{9-2}{53} & \frac{100}{150} & \frac{113}{15} & \frac{1}{160} & \frac{1}{15} \\ \frac{9-3}{54} & \frac{100}{200} & \frac{215}{215} & \frac{1}{160} & \frac{1}{160} \\ \frac{9-3}{54} & \frac{100}{200} & \frac{215}{315} & \frac{1}{160} & \frac{1}{160} \\ \frac{9-4}{54} & \frac{100}{200} & \frac{410}{513} & \frac{1}{160} & \frac{1}{160} \\ \frac{9-4}{540} & \frac{100}{500} & \frac{515}{512} & \frac{1}{200} & \frac{1}{200} & \frac{1}{100} \\ \frac{9-10}{512} & \frac{900}{200} & \frac{100}{513} & \frac{1}{160} & \frac{1}{160} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{515} & \frac{1}{77} & \frac{1}{2700} & \frac{90}{90} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{513} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{500} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{500} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{500} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{500} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{500} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{100}{500} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{500} & \frac{1}{540} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{100}{510} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{1}{100} \\ \frac{9-1}{540} & \frac{1}{100} & \frac{1}{$		S-1	5.0	6.5					
$B-1 = \begin{bmatrix} \frac{3+2}{5+2} & \frac{12}{5+2} & \frac{12}{5$		S-2	10.0	11.5					
$B-1 = \begin{bmatrix} \frac{5}{5} & \frac{25}{25} & \frac{265}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{3}{25} & \frac{3}{35} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{5}{25} & \frac{4}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} & \frac{1}{25} \\ \frac{5}{5} & \frac{1}{25}$		S-4	20.0	21.5					
$B-1 = \begin{bmatrix} \frac{8-6}{57} & \frac{30.0}{550} & \frac{31.5}{55} & \frac{1}{10} & 1$		S-5	25.0	26.5					
B-1 $\frac{5-6}{5-9}$ $\frac{45.0}{51.0}$ $\frac{45.3}{51.0}$ S-10 50.0 51.3 $\frac{1}{51.0}$ S-11 55.0 55.7 2700 90 10 R-4 67.3 65.6 $\frac{1}{51.0}$ 57.3 $\frac{1}{51.0}$ 67.3 B-2 $\frac{5-1}{5-5}$ 25.0 25.7 $\frac{1}{5-6}$ $\frac{1}{5-6}$ $\frac{1}{5-6}$ B-2 $\frac{5-7}{5-5}$ 35.6 $\frac{1}{5-6}$ $\frac{1}{5-6}$ $\frac{1}{5-6}$ B-3 $\frac{5-7}{5-6}$ 35.0 35.6 $\frac{1}{5-6}$ $\frac{1}{5-6}$ B-3 $\frac{5-6}{5-8}$ 30.0 30.3 $\frac{1}{5-6}$ $\frac{1}{5-6}$ B-3 $\frac{5-3}{5-6}$ 30.0 $\frac{1}{5-6}$ $\frac{1}{5-6}$ $\frac{1}{5-6}$ B-4 $\frac{5-2}{5-2}$ 5.10 69.7 $\frac{1}{5-10}$ $\frac{1}{5-6}$ $\frac{1}{5-6}$ B-3 $\frac{5-3}{5-2}$ 31.6 $\frac{1}{5-0}$ $\frac{1}{5-6}$ $\frac{1}{50.0}$ $\frac{1}{5-6}$ B-4 $\frac{5-2}{5-2}$ 5.7 $\frac{1}{50.0}$ $\frac{1}{50.0}$ $\frac{1}{50.0}$ $\frac{1}{5-6}$ $\frac{1}{50.0}$ </td <td></td> <td>S-6</td> <td>30.0</td> <td>31.5</td> <td></td> <td></td> <td></td> <td></td> <td></td>		S-6	30.0	31.5					
$B-3 = \frac{3 - 9}{5 - 9} + \frac{7 - 0}{5 - 0} + 7 $	B-1	S-7	35.0	36.5	<u> </u>			\vdash	
s-10 $s0.0$ $s1.3$ $s1.4$ $s1.5$ $s-11$ 50.0 61.5 7.7 2700 90 10 $s-14$ 60.0 61.5 7.7 2700 90 10 $s-1$ 5.0 6.5 10 10 10 10 $s-1$ 5.0 6.5 10 10 10 10 $s-7$ 35.0 30.3 10 10 10 10 $s-7$ 35.0 30.3 10 10 10 10 $s-1$ 15.0 53.4 10 10 10 10 $s-1$ 15.0 53.4 10 10 10 10 $s-1$ 15.6 10.0 10 10 10 10 $s-1$ 15.6 10.0 10 10 10 10 $s-1$ 15.7 10.0 10 10 </th <th></th> <th>S-9</th> <th>45.0</th> <th>45.2</th> <th>-</th> <th></th> <th></th> <th>\vdash</th> <th></th>		S-9	45.0	45.2	-			\vdash	
B-1 510 519 0 0 R-4 67.3 68.6 0 0 B-2 $5-1$ 50 65.1 0 B-2 $5-7$ 35.0 35.8 0 0 B-2 $5-7$ 35.0 35.8 0 0 B-2 $5-6$ 30.0 30.3 0 0 B-3 $5-6$ 40.0 40.8 0 0 S-11 50.0 55.4 0 0 0 S-11 50.0 51.4 0 0 0 S-10 50.0 50.4 0 0 0 S-11 50.0 50.4 0 0 0 S-12 60.0 60.7 0 0 0 S-12 50.0 50.3 0 0 0 S-2 7.5 9.0 7.0 1400 54 200 S-3 12.5 4.0		S-10	50.0	51.3					
$B-2 = \begin{bmatrix} 8+12 & 00.0 & 01.5 & 7.7 & 2700 & 90 & 10 \\ \hline R+4 & 673 & 68.6 & 1 & 1 \\ \hline 8+2 & 00.0 & 20.2 & 1 & 1 \\ \hline 8+4 & 20.0 & 20.2 & 1 & 1 \\ \hline 8+4 & 20.0 & 20.2 & 1 & 1 \\ \hline 8+4 & 20.0 & 20.2 & 1 & 1 \\ \hline 8+4 & 20.0 & 20.2 & 1 & 1 \\ \hline 8+4 & 20.0 & 20.2 & 1 & 1 \\ \hline 8+4 & 20.0 & 20.2 & 1 & 1 \\ \hline 8+2 & 5.8 & 40.0 & 40.8 & 1 & 1 \\ \hline 8+2 & 5.8 & 40.0 & 40.8 & 1 & 1 \\ \hline 8+1 & 5.0 & 50.8 & 1 & 1 \\ \hline 8+3 & 5.4 & 10.0 & 50.8 & 1 & 1 \\ \hline 8+3 & 5.4 & 10.0 & 50.8 & 1 & 1 \\ \hline 8+3 & 5.4 & 10.0 & 50.8 & 1 & 1 \\ \hline 8+3 & 5.4 & 10.0 & 60.7 & 1 & 1 \\ \hline 8+3 & 5.4 & 14.5 & 6.0 & 1 & 1 \\ \hline 8+3 & 5.4 & 14.5 & 16.0 & 1 & 1 \\ \hline 8+3 & 5.4 & 14.5 & 16.0 & 1 & 1 \\ \hline 8+4 & 5.4 & 20.5 & 40.0 & 54 & 200 \\ \hline 8+4 & 17.5 & 19.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 17.5 & 19.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 17.5 & 19.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 2.5 & 4.0 & 1 & 100 & 54 & 200 \\ \hline 8+4 & 5.4 & 6.2 & 54.0 & 1 & 100 & 54 & 200 \\ \hline 8+5 & 2.7 & 3.2 & 3.34 & 1 & 100 & 54 & 200 \\ \hline 8+5 & 2.7 & 3.2 & 3.34 & 1 & 100 & 54 & 200 \\ \hline 8+5 & 2.7 & 3.2 & 3.34 & 1 & 100 & 54 & 200 \\ \hline 8+5 & 2.7 & 3.2 & 3.34 & 1 & 100 & 54 & 200 \\ \hline 8+5 & 2.7 & 3.2 & 3.34 & 1 & 100 & 54 & 200 \\ \hline 8+5 & 2.7 & 3.2 & 3.34 & 100 & $		S-11	55.0	55.9					
R-4 $\frac{7.3}{5.4}$ $\frac{68.6}{5.5}$ Image: constraint of the second se		S-12	60.0	61.5	7.7	2700	90	10	
$B-2 = \begin{bmatrix} \frac{5\cdot1}{5\cdot4} & \frac{5\cdot0}{20.0} & \frac{6\cdot5}{25.7} & \frac{1}{25.7} & 1$		R-4	67.3	68.6					
$B-2 = \begin{bmatrix} \frac{8}{8}, \frac{4}{5}, \frac{20,0}{25,0}, \frac{25,7}{25,0}, \frac{1}{25,7}, \frac{1}{10}, \frac{1}{1$		S-1	5.0	6.5					
$B-2 = \begin{bmatrix} 3-2 & 2.7.3 & 2.7.7 & 3.7.3 & 3.0.3 & 3.0.3 & 3.0.3 & 3.0.3 & 3.0.3 & 3.0.3 & 3.0.8 & 3.0.8 & 3.9.8 & 4.0.0 & 40.8 & 3.9.8 & 4.0.0 & 40.8 & 3.9.8 & 4.0.0 & 40.8 & 3.9.8 & 4.0.0 & 45.6 & 3.9.0 & 30.8 & 3.9.1 & 4.5 & 6.0 & 3.9.1 & 4.5 & 6.0 & 3.9.1 & 4.5 & 6.0 & 3.9.1 & 4.5 & 6.0 & 3.9.1 & 4.5 & 6.0 & 3.9.1 & 3.9.5 & 3.9.1 &$		S-4	20.0	20.2		<u> </u>		\vdash	
$B-2 = \begin{bmatrix} \frac{3}{3}, $		S-0 S-6	30.0	20.7				\vdash	
$B-4 = \frac{5 \cdot 8}{5 \cdot 9} + \frac{40.0}{5 \cdot 0} + \frac{40.8}{5 \cdot 9} + \frac{1}{5 \cdot 0} + \frac{40.8}{5 \cdot 11} + \frac{1}{5 \cdot 0} + \frac{1}{5 \cdot 1} + \frac{1}{5 \cdot 1} + \frac{1}{5 \cdot 0} + \frac{1}{5 \cdot 1} + \frac{1}{5 \cdot 1} + \frac{1}{5 \cdot 0} + \frac{1}{5 \cdot 1} + \frac{1}{5 \cdot$		S-7	35.0	35.8					
$B-4 = \begin{bmatrix} \frac{8}{9} & \frac{45.6}{9.10} & \frac{45.6}{50.0} & \frac{1}{50.0} & \frac{45.6}{50.1} & \frac{1}{50.0} & \frac{1}{55.4} & \frac{1}{10.10} & \frac{1}{10.10} \\ \hline \frac{8}{9} & \frac{1}{10.10} & \frac{1}{10.0} & $	D-2	S-8	40.0	40.8					
$B-4 = \begin{bmatrix} 3-10 & 30.3 & 30.8 & 1 & 1 & 1 \\ \hline S-11 & 53.0 & 53.4 & 1 & 1 & 1 \\ \hline S-12 & 60.0 & 60.7 & 1 & 1 & 1 \\ \hline S-2 & 9.5 & 11.0 & 6.9 & 2400 & 65 & 45 \\ \hline S-2 & 9.5 & 11.0 & 6.9 & 2400 & 65 & 45 \\ \hline S-2 & 9.5 & 11.0 & 6.9 & 2400 & 54 & 200 \\ \hline S-6 & 39.0 & 39.5 & 1 & 1 \\ \hline S-6 & 39.0 & 50.3 & 1 & 1 \\ \hline S-6 & 5.6 & 59.0 & 7.0 & 1400 & 54 & 200 \\ \hline S-1 & 2.5 & 4.0 & 1 & 1 \\ \hline S-2 & 2.5 & 24.0 & 1 & 1 \\ \hline S-5 & 22.5 & 24.0 & 1 & 1 \\ \hline S-5 & 22.5 & 24.0 & 1 & 1 \\ \hline S-5 & 22.5 & 24.0 & 1 & 1 \\ \hline S-6 & 27.5 & 29.0 & 1 & 1 \\ \hline S-6 & 27.5 & 29.0 & 1 & 1 \\ \hline B-4 & S-7 & 32.5 & 33.4 & 1 & 1 \\ \hline S-8 & 37.5 & 39.0 & 1 & 1 \\ \hline S-9 & 42.5 & 44.0 & 7.2 & 2500 & 125 & 15 \\ \hline S-10 & 47.5 & 48.2 & 1 & 1 \\ \hline R-2 & 53.9 & 54.6 & 1 & 1 \\ \hline R-2 & 53.9 & 54.6 & 1 & 1 \\ \hline R-7 & 74.4 & 74.5 & 1 \\ \hline NOTES: 1) Refer to Appendix A, Figure A-1 for definitions. \\ 2) Gravel defined as particles larger than the No. 4 sieve size, Sat$		S-9	45.0	45.6					
S-12 60.0 60.7 Image: constraint of the state of		S-10 S-11	55.0	55.4	<u> </u>				
S-1 4.5 6.0 2400 65 45 B-3 S-3 14.5 16.0 1 1 1 S-4 39.0 39.5 1 1 1 1 1 S-8 50.0 50.3 1 1 1 1 1 1 S-1 2.5 4.0 1 <td></td> <td>S-12</td> <td>60.0</td> <td>60.7</td> <td></td> <td></td> <td></td> <td></td> <td></td>		S-12	60.0	60.7					
B-3 S-2 9.3 11.0 6.9 2400 65 45 B-3 S-3 14.5 16.0		S-1	4.5	6.0					
B-5 B-5 B-6 B-6 B-7 B-8 S0.0 S0.3 Description <	B-3	S-2 S-3	9.5	11.0	6.9	2400	65	45	
S-8 50.0 50.3 Image: symptotic symptot symptot symptotic symptotic symptot symptot symptot symptotic s		S-6	39.0	39.5					
S-1 2.5 4.0 S-2 7.5 9.0 7.0 1400 54 200 S-3 12.5 14.0 1 1 1 1 1 S-4 17.5 19.0 1		S-8	50.0	50.3					
$B-4 = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} & \frac{3}{2} & \frac{1}{2} & \frac{1}{2$		S-1	2.5	4.0	7.0	1400		200	
S-4 17.5 19.0 S-5 22.5 24.0 S-6 27.5 29.0 S-7 32.5 33.4 S-7 32.5 33.4 S-9 42.5 44.0 7.2 2500 125 15 S-9 42.5 44.0 7.2 2500 125 15 S-10 47.5 48.2 Image: Constant of the state of		S-2 S-3	12.5	9.0	7.0	1400	24	200	
B-4 S-5 22.5 24.0 B-4 S-7 32.5 33.4		S-4	17.5	19.0					
B-4 B-4 B-4 B-4 B-7 32.5 33.4 B-4 B-7 32.5 33.4 B-4 B-7 32.5 33.4 B-2 33.9 C C C C C C C C C C C C C C C C C C C		S-5	22.5	24.0					
B-4 S-5 37.5 39.0 S-9 42.5 44.0 7.2 2500 125 15 S-10 47.5 48.2 Image: Constraint of the state of		S-6 S-7	32.5	29.0	<u> </u>			\vdash	
S-9 42.5 44.0 7.2 2500 125 15 S-10 47.5 48.2	B-4	S-8	37.5	39.0					
S-10 47.5 48.2 R-2 33.9 54.6 R-4 64.2 65.1 R-5 68.3 69.0 R-7 74.4 74.5 NOTES: 1) Refer to Appendix A, Figure A-1 for definitions. 2) Gravel defined as particles larger than the No. 4 sieve size, Sar		S-9	42.5	44.0	7.2	2500	125	15	
R-2 3-7.9 3-7.0 R-4 64.2 65.1 65.3 R-7 74.4 74.5 65.1 NOTES: 1) Refer to Appendix A, Figure A-1 for definitions. 2) Gravel defined as particles larger than the No. 4 sieve size, Sar		S-10	47.5	48.2					
R-5 68.3 69.0 R-7 74.4 74.5 NOTES: 1) Refer to Appendix A, Figure A-1 for definitions. 2) Gravel defined as particles larger than the No. 4 sieve size, Sat		R-2 R-4	64.2	65.1				\vdash	
R-7 74.4 74.5 <u>NOTES:</u> 1) Refer to Appendix A, Figure A-1 for definitions. 2) Gravel defined as particles larger than the No. 4 sieve size, Sar		R-5	68.3	69.0					
<u>NOTES:</u> 1) Refer to Appendix A, Figure A-1 for definitions. 2) Gravel defined as particles larger than the No. 4 sieve size, Sar		R-7	74.4	74.5					
	B-4	S-3 S-6 S-7 S-8 S-9 S-10 R-2 R-4 R-5 R-7 1) Refer (2) Gravel	22.5 27.5 32.5 37.5 42.5 47.5 53.9 64.2 68.3 74.4 to Appen I defined	24.0 29.0 33.4 39.0 44.0 48.2 54.6 65.1 69.0 74.5 dix A, Fig as particle	7.2 ure A-1	2500 for definition than the No	125 ms. . 4 sieve	15 size, Sar	

